Introduction to Economics: Micro and Macro Economics - 
Micro Economics: Welfare Economics:  Supply and Demand, Elasticity; Consumption and Consumer  behaviour; Production  and  
Theory  of  costs.   Market  Organisation:  Competition, Monopoly.
Macro Economics: National  income  accounting,  demand  and  supply.   Simple  Keynesian model  and  extensions.   
 Consumption  and  Investment. Inflation  and  Unemployment.Fiscal policy Money, banking and finance.
Reference Texts:
 
1. Intermediate Microeconomics by Hal 
Varian 
2. Microeconomic Theory by Richard Layard and A.A. Walter 
3. Microeconomics in Context by N. Goodwin, J. Harris, J. Nelson, B. Roach and M. Torras 
4. Microeconomics:  
behavior, institutions, and evolution by Bowles S 
5. Macroeconomics by N. G. Mankiw 
6. Macroeconomics by R Dornbusch and S Fisher 
7. Macroeconomics  in  context  by  N  
Goodwin,  J  Harris,  J  Nelson,  B  Roach  and  M Torras
- Teacher: Madhura Swaminathan
 
 Syllabus:
  Analysis of Discrete data: Nonparametric methods: Decision theory,
 Goodness of fit tests, Multiway contingency tables, Odds ratios, Logit 
model, Wilcoxon test, Wilcoxon signed 
rank test, Kolmogorov test. Elements of decision theory : Bayes and 
minimax procedures.
Reference Texts:
1. G. K. Bhattacharya and R. A. Johnson: Statistics : 
Principles and Methods
2. P. J. Bickel and K. A. Doksum: Mathematical Statistics
3. E. J. Dudewicz and S. N. Mishra: Modern Mathematical Statistics
4. V. K. Rohatgi: 
Introduction to Probability Theory and Mathematical Statistics
https://www.isibang.ac.in/~adean/infsys/database/Bmath/S4.html
- Teacher: Soumyashant Nayak
 
 Syllabus:  Discrete parameter martingales 
(without conditional expectation w.r.t. algebras), Branching processes, 
Markov models for epidemics,
Queueing models. 
Notes:  (i)  Measure  theory  to  be  avoided.   Of  course,  use  of  DCT,  MCT,  Fubini,  etc.
overtly or covertly permitted.  (ii) Relevant materials concerning Markov chains, including
continuous time MCs, may be reviewed.  If this course runs concurrently with Prob.  III
(where Markov chains are taught), some concepts/facts needed may be stated with proofs
deferred to Prob.  III. (iii) Genetic models may also be included, but then at least two
topics from the above may have to deleted, as the background material from genetics may
be formidable.
Reference Texts:
 
1.  A.  Goswami  and  B.  V.  Rao:   A  Course  in  Applied  Stochastic  Processes.
Hindustan Book Agency
2.  S.  Karlin  and  H.  M.  Taylor:  A  First  and  Second  Course  in  Stochastic  Processes.
Academic Press, 1975 and 1981.
3.  S.   M.   Ross: Introduction   to   Probability   Models.8th   
edition.Academic Press/Elsevier, Indian reprint, 2005.  (Paperback)
4.  S. M. Ross:  Stochastic Processes.  2nd edition.  Wiley Student 
Edition, 2004.  (Pa-perback)
https://www.isibang.ac.in/~adean/infsys/database/Bmath/ASP.html
- Teacher: Siva Athreya